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ABSTRACT'

Adaptive relaxation algorithms use anti-jamming schemes that require either a

large amount of computation or a large amount of memory.ot this paper~ present5

a non-adaptive approach that possesses substantial computational and memory advan-

tages over the adaptive schemes. The approach uses averaging and may be applied

whenever the relaxation algorithm's point-to-set maps satisfy appropriate assumptions.
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1. INRODUCTION

There exist many situations ([11-[3], [5], [8], [10], [12]-[16]) in which the solution

set D (P) (assumed to be in E' for simplicity's sake) of a problem P may be expressed

as the intersection of the solution sets D (I',) of a finite number of problems Pj, j = 1,

2,..,p, that is D(P)= D(P 1)In D(P 2)In .. nD (Pp). In that case, one may try to

find a set T, point-to-set maps Aj (.), j = 1, Z ....,p, and a surrogate cost v I(.) so that the

following hypotheses are satisfied.

Hypothesis 1:

(i) T is a closed subset of E'.

(ii) vI(.) is from T into E.

For j =1,Z.,p

(iii) Aj (.) is from T into all the non-empty subsets of T,

(iv) D(Pj) = (z ET Iz E A(z)).

Hypothesis 2: For j 1, Z..., p,if apoint zis in Tbut not in A(z), scalars ej(z) > 0,

6, (z) > 0 and Aj (z) exist such that v (y ') 5v (z' -i 6(z), and Aj (z) 5 v (z') for every y

in Aj(z ) and for every z ' in B(z, ej (z)) n T.

Hypothesis 1 ensures that the relaxation algorithm given below is well defined

and Hypothesis 2 is the usual monotonicity assumptions used to obtain asymptotic sta-

bility in the large [4], [6], [7], [111, [17], [18].

Starting at some point z I in T, one generates a sequence {z, } by using one of the

maps Aj (.) at iteration L.__________

Algotthm : Le z Iin Tbe gven.Accesioi F r.
Algoith 1: etzin~bgivn.,~~.~NTIS CRA&M

C'ODTI C TAB E.JStep 0: Set i 1. -a0('Uiannow-.cud Ul
Justification

By .......................---
Distribution/I

Avjiilabiiity Codes

Aval ai:d I o
Dist Spucial

A,- I



-3-

Step 1: Find apointxi inAm(i)(zi), l<m(i)<_p.

Step 2: Ifv(xi) _v(zi), letzi+1 = zi, leti = i +1, and go to Step 1; else, letzl -1,=

xi, let i = i + 1 and go to Step 1.

If Algorithm 1 uses point-to-point maps aj(.), that is, if Aj(z) contains one

and only one point aj(z) for every z in T and j = 1, 2,..., p, if those maps are continu-

ous on T, and if Hypotheses 1 and 2 are satisfied, then every cluster point of every

sequence generated by Algorithm 1 is in D (P), and furthermore, if D (P) contains at

most a countable number of points, every bounded sequence generated by Algorithm

1 converges to a point in D (P), provided that {m (i)} satisfies the following hypothesis

proposed by Fiorot and Huard [2], [3, p. 76, Hypothesis H5]:

Hypothesis 3: An integer r exists so that to every i = 1, 2,... and j in the interval [1p]

correspond at least one index k in [i,i +r] such that m (k) = j.

It is not difficult to find maps m (.) that satisfy Hypothesis 3: a cyclic

approach corresponds to letting m (1) = 1, m (2) = 2,..., m (p) = p,m(p + 1) =

p + 1,.., etc, and Aitken double sweep choice [4, p. 158] corresponds to letting m (1) =

1, m (2) = 2,.., m (p) = p, m (p + 1) = p -1, m (p +2) = p-2,..., etc. For examples of

the approach used in the context of unconstrained minimization, see Luenberger [4,

pp. 158-159].

Unfortunately, when Algorithm 1 uses point-to-point maps that are not con-

tinuous or point-to-set maps, its asymptotic properties may not be related to D (P)

([3], [12]). In such cases one may use one of the two adaptive schemes given in [7] for

determining the quantity m (i) at iteration i. Both schemes have drawbacks: either a

large amount of computation or a large amount of memory is required. To alleviate

those difficulties, we propose an algorithm based on averaging that uses a sequence

{m (i)} that may be chosen non-adaptively.
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II. A NON-ADAPTIVE AVERAGING SCHEME

The asymptotic properties of the averaging algorithm are related to D (P)

when, in addition to Hypothesis 1, the following hypothesis is satisfied.

Hypothesis 4:

(i) The set T is convex.

(ii) The map v (.) is upper-semi continuous on T with respect to T, that is, to every

point z in T and 6 > 0 corresponds an r > 0 such that v (z ") 5 v (z) + 6 for every z in

B (z, r) n T. z

For every index j in {1, 2,.... p):

(iii) if a point z is in Tbut not inAj(z), scalars ej(z) > 0, 6j(z) > 0 and Xj (z) exist such

that v (z ' + (y '-z ")) < v (z ") - pbj(z), and )tj(z) < v (z ") for every ; in the interval

[0,1], for everyy inAj(z') and for everyz ' inB (z, ej(z)) n T,

(iv) if a point z is inAj(z), then to every scalar 6 > 0 corresponds a scalar e > 0 such

that v (z) -6<v(y ') for everyy' inAj(z') and for every z inB(z,e) n T.

The averaging algorithm uses an initial guess of a solution z 1 in T and a

sequence {m (i)} that takes its values in the set {1, 2 ,...,p).

Algorithm 2: Givenz 1 in T and (m (i)} in {1, 2,..., p)

Step0: Seti=1.

Step 1: Find a pointyi inAm (i)(zi).

Step2: Ifv(yi)>_v(zi),letz i ,1 =zi, leti = i+landgotoStep 1;elsegotoStep3.

Step 3: Let ; = min v1, (z)-v(

Step4: Letzi+j = zi+pdyi-zi), leti = i +1 and go to Step 1.

Lemma 1: If Hypotheses 1 and 4 are satisfied, then Algorithm 2 is well defined, and

whenever zi ,+ 1 and zi are two consecutive points of a sequence generated by the

I,
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algorithm such that z +I Ifz5, then v(z1 +i) < v(zi), and Ilz, +1 -z,1 5  v v(z5 )-v (M,.

Proof:- Parts (ii) and (iii) Of Hypothesis 1, Part (i) of Hypothesis 4, and the fact that if

v(yi) < v (z5), the quantity g4 is in [0, 1] immediately imply that the algorithm is well

defined. If zi +1 and z, are two consecutive points of a sequence generated by Algo-

rithm Z and if z,+ I #z,, then it is clear that v (y,) < v(z), X . 0z, +1 I z1 + $4 y1-z,)

and from (iii) of Hypothesis 4, v(z + 1) < v(z1 ). If g < 1, then I 1z1++-1 11 =

v (zj)-v (vi), if ;4 = 1, then z, + 1 = y1, v (zi)-v (ye) 11y1-z5 11, and thus, if z, + I# 1

V (Z5 )-v(y) 11y-zII1 = lizi +I-Z, 1l. 1

We now analyze the asymptotic properties of Algorithm 2.

Lemma 2:- Suppose that Hypotheses 1 and 4 are satisfied and let {z5 } be a sequence

generated by Algorithm 2. If an infinite subset K of the integers exists so that (i) the

subsequence {z, }K converges to some point z., (ii) the subsequence {Yd )K is bounded

and (iii) m (i) = j for every index i in K, then z. belongs to Ai (z.), the subsequence

( 114 + 1 - Zi 11 1K Converges to 0, and the Subsequence {z, + I}K Converges to Z..

Proof: The set T is closed, the sequence {z5} is in T, and thus z. is in T. Assume that

z. does not belong to Aj(z.). Part (iii) of Hypothesis 4 and the fact that m (i) =j for

every index i in K imply that an index k and a scalar 6j (z.) > 0 exist such that

V (Zi +p(,y-Zj))5 <V (z,) M 016 (Z) (3)

for everyp in [0, 11 and for every i > iin K.

Using Eq. (3) with At= 1lyields

Thus, for every i > k, i in K, v (y,) < v (z1) andwp is computed in Step 3 of Algorithm 2.

The subsequences {Zi)K and {Yi}K are bounded and thus a scalar A > 0 exists so that

11y 5-z511 : A for all i in K. Using Eq. (4) we may immediately conclude that for every i
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->-k, i ink

Ilyi-zi 11
and

14>A 
=  rmin 1, ].

It follows that for every i > k, i in K
v (z, +AyVi-z)) v (z) -pi 6 (z.)

and

v (zi +1) _< v (zi) - Amin6j(Z(- (5)

From Lemma 1 we know that v (zi + 1) < v (zi) for every index i and thus Eq. (5)

implies that the sequence {v (zi)} is unbounded from below. This is not possible in

view of Hypothesis 4, part (iii), and we must conclude that z. belongs to Aj(z.).

Suppose now that { Ilzi + 1-zi 11 1K does not converge to 0, that is, suppose that an

infinite subset M of K and a scalar A > 0 exist so that IIz, + I-zi II > A for every i in M.

Lemma 1 implies that

-= V (zi )-V (Vi) >: Izi + I -zi 11 ,

and

v (y v (zi) - A. (6)

The point z. is inAj(z.), and part (iv) of Hypothesis 4 implies the existence of a scalar

e > Osuchthatv(z.)- A < v (y) for everyy inAj(z) and for every z in B (z.,e) n T.

The subsequence {za }M converges to z., the point y is in Aj (zi) for every index i in M,

and therefore an integer m exists so that for every i > m, i in M, zi is in B (z.,e) n T

and thus
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V (Z )- -t <V (i) .- (7)

Using Eqs. (6) and (7), we obtain

A Z)+ < V (zi) (8)v(z.) + (8

for every i > m, i in M. Eq. (8) contradicts part (ii) of Hypothesis 4 and we must con-

clude that { I IZi + 1-zi II )K converges to 0. The subsequence {zi }K converges to z. and

therefore the subsequence {zi + 1 }K converges to z. also. 0

Lemma 3: Suppose that Hypotheses 1 and 4 are satisfied and let {z5) be a sequence

generated by Algorithm 2. If an infinite subset K of the integers exists so that the

subsequence {Zi}K converges to some point z. and the subsequence {Yi}K is bounded,

then the subsequence (zi + 1 }K also converges to z..

Proof: Let the sets KU), j = 1, 2,...,p,J and L be defined as follows:

K(j) = {iEK I m(i) =j)

J = {" I K(j) contains infinitely many indices}

L= uK (')
j el

It is clear that {Zi)K(j) converges to z. for every j inJ. Lemma 2 implies that

(Zi +1}K(j) converges toz. for every j inJ, and thus (zi +I}L converges toz.. The

definition of L implies that an integer k exists so that

{iEK I i>k} = {iEL I i>k)

and thus the subsequence {Zi + 1 }K converges to z,. 0

The sequence {m (i)} cannot be arbitrary if the asymptotic properties of

Algorithm 2 are to be related to D (P). Known results ([2], [3]) indicate that {m (i)}

should not only take on each value j, j = 1, 2.... p for infinitely many indices i, but that
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the "density" of occurrence of these values must not become vanishingly small, that is,

the map m (.) must satisfy Hypothesis 3.

Theorem 1: Assume that Hypotheses 1, 3 and 4 are satisfied, and let {zi} be a

sequence generated by Algorithm 2. If the sequence {i} is bounded, then {z,} is

bounded, every cluster point of {zi} is in D (P), and {zi} is asymptotically regular, that

is, the sequence { IIzi + - zi II } converges to 0.

Proof: The definition of Algorithm 2 implies that zi, 1 is in the convex closure of the

set of points z 1, Y 1, Y 2,-, Yi, and thus the boundedness of {yj} implies the bounded-

ness of {zi }. Let z. be a cluster point of a sequence {z } generated by Algorithm 2.

An infinite subset K of the integers exists so that the subsequence {Zi}K converges to

z.. Hypothesis 3 implies that an integer r exists such that {1, 2,..,p} = {m (i),

m (i + 1),..., m (i +r)} for every positive integer i. Lemma 3 implies that the subse-

quences {Zi+1}K, {za +2}K,..., {zi +r}K converge toz.. Let the sets Land K(j), j = 1,

2,..., p be defined as follows:

L = {i I iEK}u{i I i-1EK}u ... U{i I i-rEK},

K(j) = {iEL I m(i) =j}.

The definition of L implies that if i is inK, theni, i +1, i +2,..., andi +rare inL. Thus

to every j in { 1, 2,..., p} and i in K correspond an index i (j) in L such that i (j) > i,

i (j) -i < r, and m (i (j)) = j. It follows that K (") contains infinitely many indices for

every j in { 1, 2,..., p}, and using Lemma Z we may then conclude that z. is inAj(z.)

for every j in {1, 2,...,p}, and thus inD(P). The proof that {zi} is asymptotically regu-

lar is similar to the proof that { lIzi +I -z, I )K converges to 0 in Lemma 2 and has been

omitted. o

The cluster point set of an asymptotically regular and bounded sequence is

not arbitrary: it contains either one point or an uncountable number of points. This
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result, shown by Ostrowski [9, p. 173] may be used to show that sequences generated

by Algorithm 2 converge.

Corollary 1: Assume that Hypotheses 1, 3 and 4 are satisfied. If D (P) contains at

most a countable number of points and if T is bounded, then every sequence {zi } gen-

erated by Algorithm 2 converges to a point in D (P).

Note that it is possible to parametrize Algorithm 2 by a scalar a > 0. Let A4

in Step 3 of Algorithm 2 be defined by

u -- in 1, lyi-zi 11 J

Theorem 1 and Corollary 1 hold for every a > 0, and therefore it is possible to control .

when the anti-jamming feature of Algorithm 2 takes effect through the choice of a.

III. CONCLUSION

Relaxation algorithms may be used whenever the problem to be solved exhi-

bit the appropriate structure, but anti-jamming schemes may have to be present to

insure the desired convergence properties. To illustrate that point, we consider now

the coordinate descent method for unconstrained minimization.

Let T = E", and given a continuously differentiable map v (.) from T into E,

and n linearly independent vectors ej, j = 1, 2,..., n in E n, let

D(P) = {z I Vv(z) = 0}

and for j = 1, 2,..., n, let

D(Pj) = {z I <Vv(z),dj> = 0).

Thus, problem P consists in finding a point in D (P) and it is clear that a point z is a

solution of P if and only if it is a common solution of the problems P, j = 1, 2,..., n,

where each problem Pj has a solution set D (Pj). For every j = 1, 2,..., n, let A (.) be

,p .
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the map from T into all the subsets of T defined by

Aj(z) = y =z +dj (y),d>=0).

Given z in T andj in {1,2,...,n}, it is possible to obtain points inAi(z) by minimiing

v (.) over the line passing through z with direction dj. Coordinate descent methods

for minimizing v (.) consists in using Algorithm 1 withp = n and a sequencing map

m (.) that satisfies Hypothesis 3. Such methods are useful when the structure of v (.)

is such that its minimization along the privileged directions dr is easy. Although it is

sometimes believed that such methods produce the desired results, the examples given

in [3] and [12] show that jamming may occur, that is, the sequences {Vv (zi)} that

correspond to the sequences {zi} generated by Algorithm 1 may be bounded away

from 0. To prevent jamming, one may use either one of the two adaptive schemes

given in [7] or the averaging scheme presented in this paper. The non-adaptive

schemes have a costly overhead that results from having to determine m (i) at every

iteration i. The scheme (Algorithm 2) presented in this paper is non-adaptive: {m (i)}

is given and thus the overhead needed to implement anti-jamming consists only in the

determination of the appropriate step length. The efficiency gained by using averag-

ing is obtained at a price: the assumptions that insure the convergence of Algorithm 2

are stronger than the assumptions that insure the convergence of the adaptive algo-

rithms given in [7]. Fortunately, Hypothesis 4 is satisfied in most cases and the

averaging scheme is therefore applicable. For example, the reader may verify that the

averaging scheme can be used to prevent jamming when the coordinate descent

method is used to minimize the three functions proposed by Powell in [12].

ill 14 Il.ip
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